
1

Are cognitive principles useful in data mining?
A case study in unsupervised learning

Luis Talavera*

Abstract—In the early days of machine learning, much work was
motivated by concerns with human behavior. However, more re-
cently, attention has shifted to the application of methods to real
world problems as exemplified by new disciplines like data min-
ing. In this paper we claim that cognitive based biases can still
be useful for solving issues arising in real world problems. We
present an example in unsupervised learning comparing the no-
tion of selective attention in cognitive psychology with the prob-
lem of feature selection in machine learning and data mining.
We show how a system that selects salient features during learn-
ing is able to fit psychological data and, at the same time, pro-
vide more efficient and comprehensible results with real world
data. The conclusion is that the notion of bounded rationality or
cognitive economy present in earlier research in machine learn-
ing, can actually be reinterpreted to help in solving data mining
problems.

I. INTRODUCTION

In the early days of machine learning, much work was
motivated by concerns with human behavior. How-
ever, as the field has matured and showed itself ca-
pable of solving challenging real world problems, the
focus on cognition has significantly decreased. Proba-
bly, there are two main trends in the nature of machine
learning research that have contributed to this fact.
First, the gap between machine learning and statistical
research has narrowed, lessening the different biases
that use to characterize both fields. Historically, statis-
tics are more concerned with algorithmic and numeri-
cal methods, with machine learning rather focusing on
symbolic problems and heuristic solutions. Nowadays,
a great extent of machine learning research is turning
to statistical concepts with a sound theoretical back-
ground. Secondly, the number of fielded applications
of machine learning has increased rapidly in recent
years. This shift towards an application-oriented view
is particularly emphasized in the field of data mining
[5], which combines methods from machine learning
and statistics for automatically extracting useful infor-
mation from data.

Under this scenario, at first sight, it may seem that
cognitive principles that inspired early machine learn-
ing research have become useless in fields such as
data mining. In fact, some authors point out sev-
eral problems that would arise when porting some ma-
chine learning techniques to data mining, claiming that
they assume that a small, well structured, error-free
dataset from which learning takes place exists. Us-
ing a database for learning may cause several prob-
lems as databases contain data generated for purposes
other than learning [10]. These problems are the size
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of databases, both in number of instances and features,
the existence of noisy and incomplete data and the
need for user interaction.

Langley [12] proposes a different view pointing out
that psychological modeling can still help in the de-
sign of learning systems. However, when modeling
cognitive behaviors simple and noise-free datasets are
needed in order to evaluate the learning processes and
the results obtained. Large, high dimensional and
noisy datasets like those handled in data mining would
render analysis of the underlying processes and their
results very complex to asses the cognitive plausibility
of the methods. The goal of this paper is to show that
these supposedly naive cognitive-based methods can
be successfully extended to work with more complex
problems, thus demonstrating that cognitive principles
may be still useful in solving data mining problems.

II. UNSUPERVISED LEARNING AND CLUSTERING

Research on inductive learning has been traditionally
split into supervised and unsupervised learning. In su-
pervised learning, observations are labeled by some
external teacher indicating the class membership and
the learning task consists in finding the characteriza-
tion of each predefined class. The unsupervised learn-
ing task assumes that no previous information exists
about the class membership of the observations, so
learning systems must also find the underlying struc-
ture of the domain.

The most typical unsupervised learning task in ma-
chine learning and data mining is clustering [7],
[11], consisting in discovering useful groups of exam-
ples and, possibly, conceptual descriptions for these
groups. In psychology, the analogous task is referred
to as sorting or categorization[16], where items are
shown to a subject with instructions to partition them
into categories.

Clustering has been extensively studied in statistics,
giving raise to several well-known methods like ag-
glomerative algorithms or optimization methods such
as k-means [11]. Statistical research in clustering has
often focused in data sets described by continuous fea-
tures and the methods may pose some difficulties to
non-experienced users, since they should be familiar
with the statistical concepts involved in the cluster-
ing process to be able to tune the results. Nominal
data is often found in symbolic Artificial Intelligence
(AI) domains, so it is not surprising that researchers
on this area developed symbolic clustering methods to
deal with these kind of problems. Particularly, ma-
chine learning researchers have developed methods for
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conceptual clustering [7], [14] aiming to provide a bet-
ter integration between the clustering and interpreta-
tion stages of the data analysis process.

Probably, the better known conceptual clustering sys-
tem is Fisher’s COBWEB[7] which in turn, constitutes
an example of a design influenced by psychological
concerns. COBWEB incorporates several ideas from
categorization studies made by cognitive psycholo-
gists and imposes a framework based upon human
learning abilities. The system addresses the cluster-
ing task as a heuristic search problem and, although
it employs some statistical concepts, it is not limited
by the strong assumptions required in purely statistical
approaches.

III. A CASE STUDY: FEATURE SELECTION VS.
SELECTIVE ATTENTION

As we discussed before, one of the problems in data
mining is the size of the data sets, and particularly, the
number of features. It is likely that large feature sets
will contain features that are not relevant for the learn-
ing task and also will increase the complexity of learn-
ing. To solve this problem, feature selection methods
have been developed, although mainly in the field of
supervised learning.

On the other hand, in sorting experiments, psychol-
ogists have observed a tendency in humans to focus
their cognitive effort on some properties when creating
categories. This behavior is often referred to as selec-
tive attention in Cognitive Psychology and sometimes
results in a very strong bias [1].

A. Selective attention: modeling human behavior

Human categorization has been always an important
concern in Cognitive Psychology. Historically, one
can identify two different views about how humans
structure knowledge about categories. The most tra-
ditional one, is referred to as the classical view and as-
sumes that categories follow strict definitions of nec-
essary and sufficient conditions. This view imposes
an all-or-none structure to categories so that all ob-
jects show the same degree of membership to these
categories. However, some studies appeared to sug-
gest that humans tend to create familily resemblance
(FR) categories in which sorting is organized around
prototypes, producing a graded membership of objects
in the categories. A viewpoint accounting for these
effects is the probabilistic view, proposing that cate-
gories are organized around probabilistic descriptions.

A number of computational models of learning are
based on the FR hypothesis of category construction
and have been shown to be able to reproduce several
human behaviors [2], [7]. However, Ahn and Medin
[1] report several experiments demonstrating that these
computational models of clustering, including Fisher’s
COBWEB, cannot account for the behavior of people
in a series of sorting experiments. These experiments
explored when people were inclined to organize cate-
gories probabilistically and when they focused on indi-

vidual properties. Results indicated that in some situa-
tions people were inclined to construct unidimensional
(1D) categories, that is, categories described by a sin-
gle dimension. None of the computational models was
able to account for these results and those using proba-
bilistic concepts tended to always form FR categories.

These results suggest that people tend to attend selec-
tively to some of the features they observe. Computa-
tional models based upon probabilistic representations
would need to incorporate some attentional mecha-
nism in order to be able to account for this behavior.

B. Feature selection: improving data analysis

When applying machine learning technology to real
world problems, accuracy is not the only important
concern, but there are other important issues to con-
sider. Among them, some of the most important are
the ability to deal with a large number of features and
comprehensibility. Usually, comprehensibility is mea-
sured as a function of the complexity of the results, so
that both issues lead to the need of building learning
systems that are able to decide which features are rel-
evant to the learning task, that is, to perform some sort
of feature selection [3]. Following [17] we can sum-
marize several dimensions for evaluating the particular
benefits of feature selection in clustering:

� Performance. The set of features used in an induc-
tive learning task is a powerful representational bias
that determines the performance of a learning system.
Irrelevant features may be particularly harmful in un-
supervised systems, leading the system to form wrong
patterns and having an impact in prediction.

� Efficiency in the learning task. The number of fea-
tures present in the data significantly determines the
complexity clustering process, especially in hierarchi-
cal clusterings. If we apply feature selection to reduce
this complexity, we should expect to obtain clusterings
with at least similar performance that we would had
obtained by using all the available features.

� Efficiency in the performance task. When using a
hierarchical clustering to classify unobserved objects
in order to infer unknown properties, the number of
features has a strong influence in the complexity of the
process in the same manner we have described above.
Again, selecting an appropriate subset of features may
reduce this complexity while maintaining the original
performance level.

� Comprehensibility of the results. Reducing the num-
ber of features used in the clustering process allow to
provide shorter cluster descriptions to the user. Short
descriptions tend to be more readable and, hence more
comprehensible.

IV. EMPIRICAL RESULTS

Although data mining and cognitive psychology may
view the problem of reducing the number of terms
used in the induction process under a very different
light, both approaches try to essentially solve a similar
question. In order to prove this point, we present two
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TABLE I

THE CONTROL STRATEGY OF COBWEB.

Function Cobweb(object,root)
1) Incorporate object into the root cluster.
2) If root is a leaf then

return expanded leaf with the object.
else choose the best of the following operators:

a) Incorporate the object into the best host
b) Create a new disjunct based on the object
c) Merge the two best hosts
d) Split the best host

3) If a), c) or d) recurse on the chosen host.

experiments using a version of COBWEB augmented
with a mechanism that selects the most relevant fea-
tures. The first one is aimed to fit psychological find-
ings and the second is done from the viewpoint of data
analysis. Results will show how a system that is able
to model human behaviors can serve as well as a useful
tool in data analysis.

A. A brief description of COBWEB

COBWEB is a hierarchical clustering system that con-
structs a tree from a sequence of objects. The system
follows a strict incremental scheme, that is, it learns
from each object in the sequence without reprocess-
ing previously seen objects. An object is assumed
to be a vector of nominal values

�����
along different

features � �
. COBWEB employs probabilistic concept

descriptions to represent the learned knowledge. In
this sort of representation, in a cluster ��� , each fea-
ture value has an associated conditional probability	�
 � �
��������� ����� reflecting the proportion of objects
in ��� with the value

�����
along the feature � �

.

The strategy followed by COBWEB is summarized in
Table I. Given an object and a current hierarchical
clustering, the system categorizes the object by sorting
it through the hierarchy from the root node down to the
leaves. At each level, the learning algorithm evaluates
the quality of the new clustering resulting from plac-
ing the object in each of the existing clusters, and the
quality resulting from creating a new cluster covering
the new object. In addition, the algorithm considers
two more actions that can restructure the hierarchy in
order to improve its quality. Merging attempts to com-
bine the two sibling clusters which were identified as
the two best hosts for the new object; splitting can re-
place the best host and promote its children to the next
higher level. The option that yields the high quality
score is selected and the procedure is recursed, consid-
ering the best host as the root in the recursive call. The
recursion ends when a leaf containing only the new
object is created.

In order to choose among the four available op-
erators, COBWEB uses a cluster quality function
called category utility defined for a partition

	��
� ������������� � � ����!�" of # clusters as

TABLE II

A METHOD FOR FEATURE SELECTION BASED ON AN ORDERING

SCHEME.

Let $ be a set of features
Let % be the feature selection threshold
Function select_features( $ , % )

compute_feature_weights($ )&('�) *,+-&('�)�./*1032 4�5�687 9;:8<1=39;:�> $(?
return ./9;:@=3*1032 4�5�687�9;:8<BA�&('�) *DC %E?

F � 	�
 ����� F � F ��G 	�
 � �H�I�����J� ����� ��K 	�
 � �H�I����� � ��L
#

(1)

This function measures how much a partition
	

pro-
motes inference and rewards clusters �M� that increase
the predictability of feature values within ��� . By us-
ing this metric, the system should be biased towards
the construction of clusters allowing accurate predic-
tions along any unobserved features.

Several design decisions in COBWEB are influenced
by results in human categorization. The use of proba-
bilistic concepts relates to studies of typicality effects
in categorization that could not be accounted by log-
ical concepts. The category utility function derives
from research on basic levels, that is, levels that hu-
mans prefer in a hierarchical classification scheme. In
general, most of COBWEB assumptions are consistent
with much of human learning and memory.

B. A simple attentional / feature selection method

We propose a filter method of feature selection based
on an ordering scheme. A weight is individually com-
puted for each feature and features are ordered accord-
ing to these weights. We define a feature selection
threshold N in the [0,1] range such that the weight re-
quired for a feature to be selected is higher for higher
N values. Our method uses the maximum computed
weight as a baseline to determine which features are
selected as shown in Table II. Note that, if we assume
relevances to be positive, when N ��O

there is no fea-
ture selection at all, so reducing the original algorithm
to a special case of our approach.

This method can be easily incorporated into COBWEB

by slightly modifying the control strategy showed in
Table I. First, we need to add an additional step be-
tween steps 2 and 3 of the existing algorithm. In this
step a call to the select_features function is performed,
obtaining a subset of relevant features to be stored in
the current root node. Second, at each classification
step, the computation of the quality function must be
modified in such a way that only the subset of relevant
features stored in the current root node is used.

The weighting function we use is the one proposed by
Gennari [8] in the context of his CLASSIT system, an
extension of COBWEB to deal with numeric features.
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Gennari refers to this measure as salience. He defines
the relative salience of a feature as its contribution to
category utility (see equation 1) in a clustering. More
formally, for a given feature � �

, salience is defined as
follows:

F � 	�
 ����� F ��G 	�
 � �H� �����J� ����� ��K 	�
 � �H� ����� � ��L
#

(2)

C. Results for psychological data

Ahn and Medin performed an experiment using four
sets of exemplars varying along four dimensions. The
structure of each set was different, having different de-
grees of between-category and within-category simi-
larity. Each subject was asked to categorize the exem-
plars into two groups. The goal was to assess if sub-
jects tended to form FR or 1D categories. They com-
pared these results with those obtained by using dif-
ferent clustering approaches, including Fisher’s COB-
WEB and found that no computational approach could
fit human results.

We reproduced the experiment using the original COB-
WEB algorithm and the augmented version presented
earlier. Some modifications were introduced, however,
in order to perform a fair comparison with subjects re-
sults. First, since COBWEB has not to be told the num-
ber of clusters in the data, it can produce more than
two in the top level. Subjects were explicitly asked
to form only two groups, so we modified the system
to force to form this number of categories at the top
level. Secondly, Ahn and Medin used ordered val-
ues for some features and considered as 1D sortings
those based upon only one feature or two adjacent fea-
tures. As COBWEB has no knowledge about ordering
and considers each value independently, we consider
as 1D sortings those in which one of the categories
had all the exemplars with one or two dimensions.

We tested several N values to see which one could fit
better human results. Table III shows the results for
these experiments. The table includes the percentages
of sorting types (family resemblance, unidimensional
or other) for the four different sets. Subjects results are
adapted from [1]. The final values used were 0.65 for
set A, 0.75 for set B and 0.1 for sets C and D. Results
show that the modified version of COBWEB is able to
fit much better subject data than the plain version, per-
haps with the exception of set C, in which the system
tends to form more 1D sortings than subjects. An inter-
esting result is that different N values for different sets
were selected, since it implies that different degrees of
attention are needed to fit results for different category
structures. Recall that higher N values means requir-
ing higher weights in features to not be removed. At
first sight, it appears that sets with low within-category
similarity such as C and D, require low N values while
sets with high within-category similarity need higher
ones. We do not have an interpretation of this behav-
ior, which remains an interesting open question.

TABLE III

RESULTS FOR PSYCHOLOGICAL DATA

Data set FR 1D Others
Subjects 55% 45% 0%

Set A Cobweb 99% 0% 0%
Cobweb-att 49% 51% 0%

Subjects 0% 100% 0%
Set B Cobweb 92% 7% 1%

Cobweb-att 1% 98% 1%

Subjects 35% 10% 55%
Set C Cobweb 15% 30% 55%

Cobweb-att 18% 32% 50%

Subjects 20% 65% 15%
Set D Cobweb 26% 57% 17%

Cobweb-att 22% 63% 15%

D. Results for UCI data

Using the same modified version of COBWEB than in
previous subsection, we report here results adapted
from [17] obtained using real world data sets from
the UCI Repository. We evaluated the results under
four dimensions: accuracy, efficiency in learning, effi-
ciency in prediction and comprehensibility. In order to
evaluate the efficiency gain in the learning and predic-
tion processes, we computed the average number of
feature tests needed to sort the instances in the train-
ing or testing set. This number is calculated by sum-
ming the total number of features involved in evaluat-
ing the category utility metric for the different cluster-
ing choices. For instance, if an observation is being
clustered in a root node with three children and using
a subset of # features, we need to perform

� # feature
tests to evaluate the category utility of incorporating
the observation to each of the siblings. In learning, ad-
ditional feature tests are needed to evaluate creating a
new cluster, merging and splitting. We think that this
way of measuring efficiency give us a better empiri-
cal approximation of the complexity of the clustering
process than, for instance, the average of features per
node. On the other hand, we use this later measure as
a measure of comprehensibility of the obtained clus-
terings, since fewer features per node indicate simpler
cluster descriptions.

Table IV shows the results for the label prediction per-
formance task. At a glance, we can observe that in
all datasets accuracy can be maintained or improved
while reducing the number of features per node used
to an average of the 40% of the original number of fea-
tures. As expected, this reduction implies an improve-
ment in the efficiency of the system in both learning
and prediction. In average, feature selection provides
an efficiency improvement of about the 50% in learn-
ing and prediction.

V. GENERAL DISCUSSION

In previous sections, we have shown how an im-
plementation of a selective mechanism that selects
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TABLE IV

RESULTS FOR SEVERAL UCI DATA SETS.

Dataset Algorithm Accuracy Tests learn Tests pred Feat./node
Cobweb 74.73 (5.05) 1619.94 (42.94) 720.40 (45.02) 13.00 (0.00)

cleve Cobweb-FS 76.04 (4.60) 928.64 (117.88) 363.80 (45.76) 5.22 (0.17)
Cobweb 80.24 (2.89) 2226.49 (59.25) 950.22 (35.62) 15.00 (0.00)

crx Cobweb-FS 80.87 (3.35) 653.60 (33.76) 211.09 (15.19) 3.91 (0.15)
Cobweb 74.23 (4.60) 3108.48 (79.31) 1371.85 (126.94) 22.00 (0.00)

horse Cobweb-FS 75.95 (3.85) 1548.66 (102.93) 602.92 (49.33) 8.52 (0.26)
Cobweb 97.65 (0.48) 8448.86 (248.21) 3952.57 (234.33) 25.00 (0.00)

hypo Cobweb-FS 97.65 (0.34) 3867.14 (229.60) 2024.41 (243.95) 18.46 (0.18)
Cobweb 65.11 (2.62) 1135.25 (21.92) 470.92 (15.74) 8.00 (0.00)

pima Cobweb-FS 66.06 (2.94) 571.35 (45.10) 195.13 (19.45) 3.35 (0.08)
Cobweb 91.93 (1.55) 4287.82 (79.96) 1881.39 (70.54) 30.00 (0.00)

wdbc Cobweb-FS 92.57 (1.20) 2249.09 (70.47) 864.46 (57.95) 11.68 (0.30)

only the most relevant feature in a clustering –
categorization- - task can successfully fulfill two dif-
ferent goals. First, it is able to fit better psychological
results in human categorization. This does not means
that the method has to be considered as a computa-
tional model of human learning, rather that the results
provided are consistent with human preferences or ten-
dencies. Secondly, the same method serves the pur-
pose of making learning and prediction more efficient
and, additionally, allows more comprehensible results
to be obtained. As we have mentioned, these issues are
important when facing real world data analysis prob-
lems.

We think that these results suggest that the use of cog-
nitive biases can help to find useful constraints for ex-
isting or future data mining techniques and that ad-
ditional examples can be found to support this claim.
One of the most representatives is the use of incremen-
tal learning. Incremental constraints are considered to
arise in many real-world situations. Humans have the
capability of modifying their conceptual schemes as
new examples are observed and so learn from a stream
of observations. Hence, it is not surprising that an
important part of the research in unsupervised learn-
ing had focused in incremental systems. Particularly,
Gennari, Langley and Fisher [9] delineate the task of
concept formation. Concept formation systems are
presented as incremental learners using a hill climb-
ing strategy that operates under reduced search con-
trol, with low memory requirements. Another com-
mon feature of concept formation systems is their hi-
erarchical organization of concepts, which provide a
logarithmic average assimilation cost. The idea was to
rapidly exploit information during learning rather than
obtain an optimal result. Although the efficiency con-
straints present in the incremental learning approach
are mainly cognitively justified, they still may be use-
ful to deal with large amounts of data. Additionally,
incremental learners provide a faster adaptation and re-
sponse in the face of new data. This situation is typical
in new application domains such as the design of adap-
tive user interfaces [13].

Probably, the most useful cognitive biases for data
mining problems are going to be those related to the
notion of bounded rationality [15], assuming that it
may be desirable to reduce the assimilation cost of
knowledge even if this means a decrease in quality.
In fact, as opposed to most of machine learning re-
search, data mining is not mainly concerned with ac-
curacy, but it also stresses efficiency and comprehen-
sibility concerns. One can view this approach as re-
lated to Simon’s notion of satisfiability vs. optimal-
ity [15], claiming that heuristic AI approaches were
able to give non-optimal but reasonable solutions of
very complex problems that statistical optimization
approaches could not provide. As discussed before,
statistics and AI techniques are closer, but still it may
appear somewhat surprising that some of the main con-
cerns of an applied discipline such as data mining are
reminiscent of ideas proposed thirty years ago in a con-
text related to cognition.

Finally, it is worth stating at this point two important
questions regarding the application of these ideas to
real-world problems. In the first place, we have to
point out that there is a strong chance that a great
amount of adaptation or tuning should be necessary.
For example, selective attention and feature selection
face basically the same problem, but it is likely that not
every attentional learning mechanism will work for ev-
ery data mining problem without changes. Actually,
the need of improving an existing model to solve a
problem is recognized as a general requirement in the
process of applying machine learning algorithms [4].

Secondly, we cannot assume that every data mining
problem has a cognitive-inspired counterpart. Rather,
some problems must be approached by directly using
more ‘pure’ statistical principles, although still com-
bined with heuristics and control strategies character-
istic of AI approaches. As an example, consider the
application of statistical tests in concept tree pruning
strategies within the COBWEB framework [6] aimed
to reduce the noise sensitivity of the system.
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VI. CONCLUDING REMARKS

We suggested that the role of cognitive principles in
providing useful biases and/or procedures for data
analysis systems may be more important that actually
recognized by current research tendencies. We have
discussed a particular example in unsupervised learn-
ing where the notions of selective attention in cognitive
psychology and feature selection in data analysis ap-
pear to be roughly the same. Empirical evidence shows
that a clustering system augmented with a mechanism
that selects the most salient features can account for
psychological phenomena and, at the same time, pro-
vide a significant reduction in complexity of analyzing
real world data. We think that these results confirm
that, as remarked by Langley [12], using knowledge of
human behavior to constrain the design of learning al-
gorithms makes good heuristic sense, not only in cog-
nitive modeling, but in fields such as data mining as
well.

We expect to see an increase in the application of ideas
that can be traced back to earlier research related to
cognitive concerns, basically to those based upon the
cognitive economy principle. Of course, topics such as
incremental learning are not exclusive from cognitive
modeling research, but still this research will provide
interesting insights and constrains to help future devel-
opments.
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